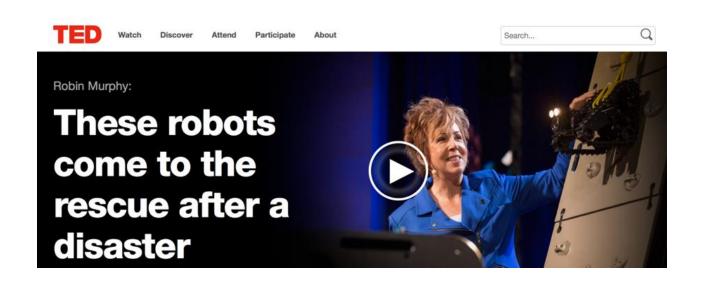
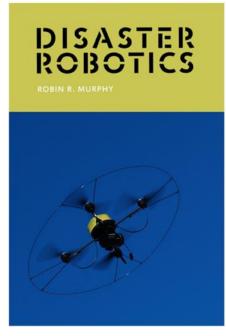


Small UAS for Emergency Management


Dr. Robin R. Murphy


Texas A&M University

Center for Robot-Assisted Search and Rescue

See: https://www.fhwa.dot.gov/uas/resources/hif19019.pdf

Background: Professor & Responder

- 29 deployments including 9/11 WTC, Katrina, Fukushima, Harvey, Kilauea
- First use of sUAS for a disaster (Katrina 2005)
- CRASAR (Center for Robot-Assisted Search and Rescue) has the largest number of deployments to disasters, starting in 2001, 30+ to 5 countries

Outline:

- The types of sUAS and sensors commonly used for natural disasters, especially flooding
- Seven Missions for sUAS for disasters
- Four Guiding Principles to help you decide when and how to use sUAS
- Six Misconceptions to avoid

Real-time images
and video
Good for tactical
operations, streaming if
internet permits

Thermal Imaging
But generally fuzzy, hard
to assess damage

Maps of large areas
A squad can cover ~175 acres in half a day, then 1 to
12 hours to create map

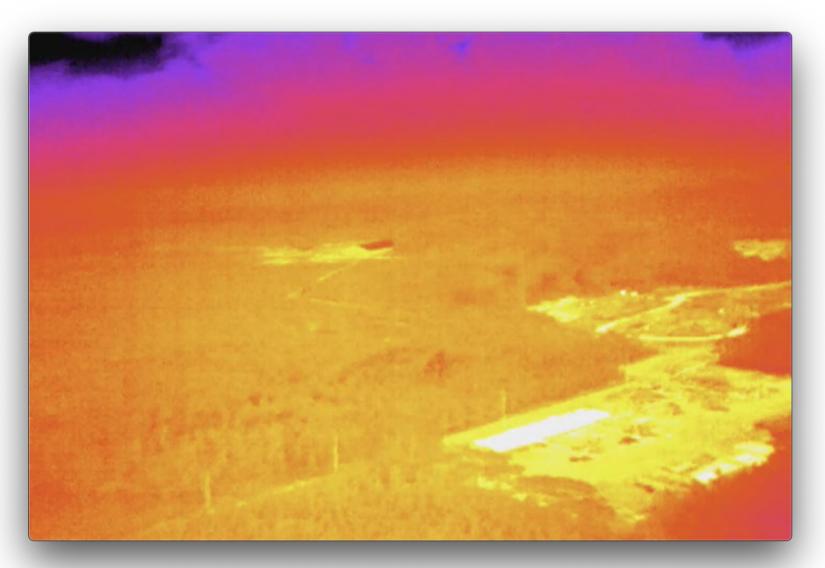
Missions that you may be asked to support

- 1. Strategic Situation Awareness (SA), Survey, and Reconnaissance
- 2. Detailed or Structural Inspec
- 3. Ground Search and Rescue
- 4. Water Search and Rescue
- 5. Debris, flood estimation, and
- 6. Tactical Situation Awareness
- 7. Delivery

FPV, panoramas, mapping later

- 1. Strategic Situation Awareness (SA), Survey, and Reconnaissance
- 2. Detailed or Structural Inspection
- 3. Ground Search and Rescue
- 4. Water Search and Rescue
- 5. Debris, flood estimation, and
- 6. Tactical Situation Awareness
- 7. Delivery

FPV, mapping


- 1. Strategic Situation Awarenes Reconnaissance
- 2. Detailed or Structural Inspection

 Maybe thermal, mapping
- **Ground Search and Rescue**
- 4. Water Search and Rescue
- Debris, flood estimation, and damage assessment
- 6. Tactical Situation Awareness
- Delivery

- 1. Strategic Situation Awarenes Reconnaissance
- 2. Detailed or Structural Inspection

 Maybe thermal, mapping
- 3. Ground Search and Rescue
- 4. Water Search and Rescue
- Debris, flood estimation, and damage assessment
- 6. Tactical Situation Awareness
- Delivery

Thermal: fuzzy, body heat hidden by foliage

Where's the lava flow and geothermal plant in this picture?

1. Strategic Situation Awa Reconnaissance

2. Detailed or Structural Inspection

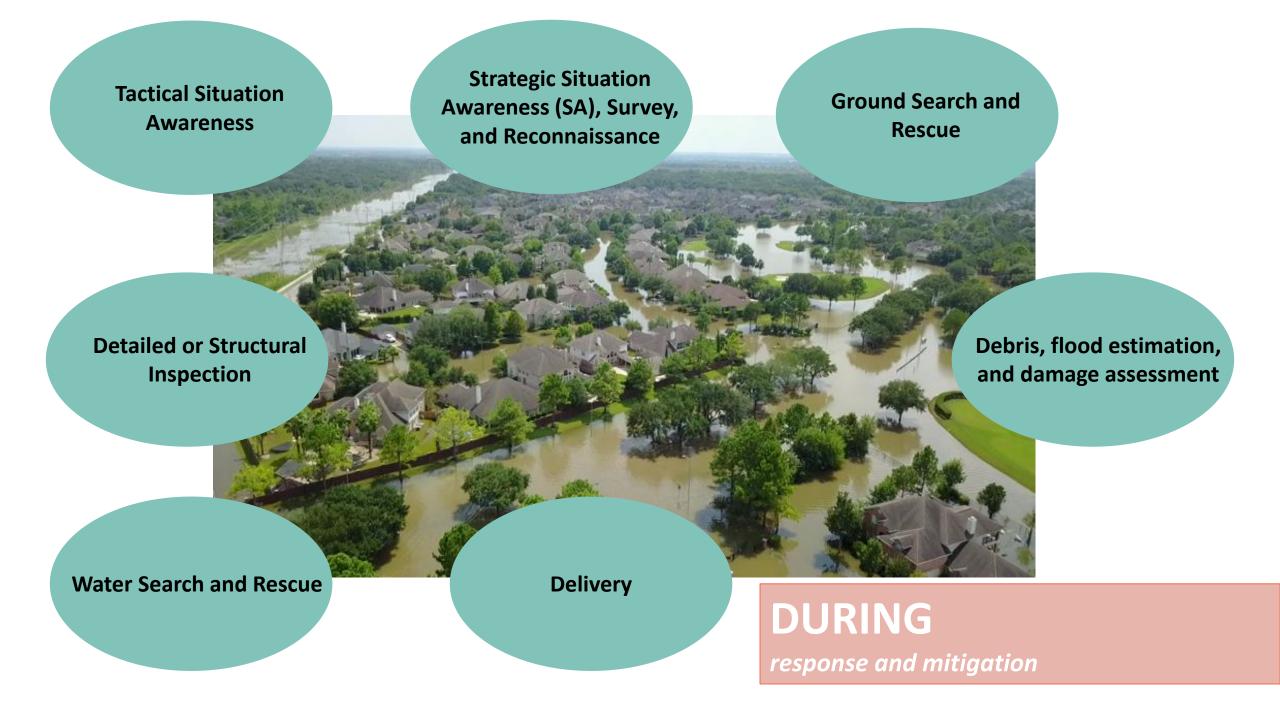
- 3. Ground Search and Rescue
- 4. Water Search and Rescue
- 5. Debris, flood estimation, and damage assessment
- 6. Tactical Situation Awareness
- 7. Delivery

FPV, panoramas, mapping later

- 1. Strategic Situation Awarenes Reconnaissance
- 2. Detailed or Structural Inspection
- 3. Ground Search and Rescue
- 4. Water Search and Rescue
- 5. Debris, flood estimation, and damage assessment
- 6. Tactical Situation Awareness
- 7. Delivery

FPV

- 2. Detailed or Structural Inspection
- 3. Ground Search and Rescue
- 4. Water Search and Rescue
- 5. Debris, flood estimation, and damage assessment
- 6. Tactical Situation Awareness
- 7. Delivery


special skill

Principles to help you decide when, what, how

Principles

- 1. Think of all the phases of the disaster, not just response and recovery
- 2. Put 1 person in charge of all sUAS teams during a response
- 3. Determine the missions first, then match the assets to the mission using COPIED
- 4. It's all about the data, so make (and execute) explicit plans for collection, post-processing, curation

BEFORE

prevention/preparedness

AFTER

reconstruction and recovery

Principles

- 1. Think of all the phases of the disaster, not just response and recovery
- 2. Put 1 person in charge of all sUAS teams during a response
- 3. Determine the missions first, then return the mission using COPIED
- 4. It's all about the data, so make (and plans for collection, post-processing

Principles

- 1. Think of all the phases of the disaster, not just response and recovery
- 2. Put 1 person in charge of all sUAS teams during a response
- 3. Determine the missions first, then match the assets to the mission using COPIED
- 4. It's all about the data, so make (and execute) explicit plans for collection, post-processing, curation

Constraints (day? altitude?) Operator factors (training, fatigue) Penetration or distance Information to whom and when Envelope the robot works in Duration

Principles

- 1. Think of all the phases of the disaster, not just response and recovery
- 2. Put 1 person in charge of all sUAS teams during a response
- 3. Determine the missions first, then match the assets to the mission using COPIED
- 4. It's all about the data, so make (and execute) explicit plans for collection, post-processing, curation

Harvey: ~6500 images and ~100 videos over 11 days with 13 pilots

Number of Pictures		Before		Incident		Response				Recovery				
Mission Type	Primary Objective	25-Aug	26-Aug	27-Aug	28-Aug	29-Aug	30-Aug	31-Aug	1-Sep	2-Sep	3-Sep	4-Sep	Total	Grand Total
Debris/Damage/Flood Estimation	Mapping	0	0	0	0	0	0	0	0	191	2471	1209	3871	3909
	Visual Assessment	0	0	0	0	0	0	23	0	0	0	0	23	
	Tornado Impact	0	15	0	0	0	0	0	0	0	0	0	15	
Inspection	Levee or Dam	0	0	0	0	0	0	0	3	0	2409	0	2412	2580
	Bridge Inspection	0	0	0	0	0	33	6	2	0	0	126	167	
	Building Inspection	0	0	0	0	0	0	1	0	0	0	0	1	
Strategic SA/Recon/Survey	Public Information	0	0	0	0	0	0	0	0	0	0	0	0	0
Tactical SA	Route or Transportation Survey	0	0	0	0	0	0	2	1	0	0	0	0	0
	Overwatch	0	0	0	0	0	0	0	0	0	0	0	0	
Grand Total	Total	0	15	0	0	0	33	30	5	191	4880	1335	6489	

<u>Number of Videos</u>		Before		Incident		Response				Recovery				
Mission Type	Primary Objective	25-Aug	26-Aug	27-Aug	28-Aug	29-Aug	30-Aug	31-Aug	1-Sep	2-Sep	3-Sep	4-Sep	Total	Grand Total
Inspection	Bridge Inspection	0	0	1	0	0	3	4	14	5	0	0	27	51
	Levee or Dam	0	0	0	0	0	0	2	14	6	1	0	23	
	Building Inspection	0	0	0	0	0	0	1	0	0	0	0	1	
Debris/Damage/Flood Estimation	Visual Assessment	0	0	4	0	0	0	17	9	0	4	0	34	
	Tornado Impact	0	4	0	0	0	0	0	0	0	0	0	4	38
	Mapping	0	0	0	0	0	0	0	0	0	0	0	0	
Strategic SA/Recon/Survey	Public Information	0	0	0	0	0	0	0	3	7	0	0	10	10
Tactical SA	Route or Transportation Survey	0	0	0	0	0	0	2	4	0	0	0	6	7
	Overwatch	0	0	0	0	0	0	0	0	0	1	0	1	
Grand Total	-	0	4	5	0	0	3	26	44	18	6	0	106	

OUR GOAL IS GETTING THE RIGHT DATA TO THE RIGHT PEOPLE FAST

DATE:	SQUAD NAME:

MISSION NAME:

Use this name as is for your folder!

PLEASE, PLEASE, PLEASE FILL IN SO WE CAN PASS ON DATA AND FIND IT AGAIN

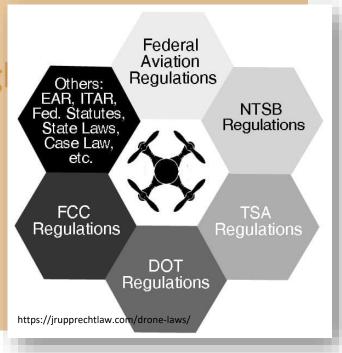
Platform, altitude:

#Sorties:

List any important file names and findings to pass on:

5 STEP DATA COLLECTION DIRECTIONS

- 1. Format memory card prior to the first mission.
 - Know that the data manager will delete it once he/she is done copying (unless pilot uses different memory cards for different missions)
- 2. Check the data after each sortie. This quality control check is really important
- **3. Rename your folders (and images).** After each mission, before handing the data to the data manager (this can be done in the car on the way back).
 - Top Folder: MISSION NAME, Sub Folders: SORTIE NUMBER PLATFORM
 - Example
 - Sector Alpha
 - Sortie 1 DJI Mavic
 - DJlimage0001.jpg
 - Sortie 2 DJI Inspire
 - If possible, add the N W S E to image file names indicating direction UAS was facing
- **4. Fill in the front side of the card.** Highlight any info that needs to be passed on and report any problems with data when giving it to the data manager to add to the notes
- 5. Turn in SD card or thumb drive to data manager with this card.


While not essential, it would be helpful if you kept additional information about missions for further analysis: arrival time, take off, landing, depart time. You can share this with the data manager.

Misconceptions to avoid

- 1. Regulations interfere with meeting goals
- 2. sUAS reduce manpower
- 3. A pilot is a pilot is a pilot
- 4. sUAS crewing is different than life flig manned aviation crews
- 5. Streaming video is a silver bullet
- 6. Bigger and more expensive is better

- 1. Regulations interfere with meeti
- 2. sUAS reduce manpower
- 3. A pilot is a pilot is a pilot
- 4. sUAS crewing is different than life flight or other manned aviation crews
- 5. Streaming video is a silver bullet
- 6. Bigger and more expensive is better

- Two pilots (+ expert) in field
- Two data managers to prep BEFORE handing off to GIS/Planning unit

- Regulations interfere with meeting goals
- 2. sUAS reduce manpower
- A pilot is a pilot is a pilot
- 4. sUAS crewing is different than lifeAble to fly FPV? Collect manned evictions AND process mapping data? Daylight waiver? ICS manned aviation crews 5. Streaming video is a silver bullet training?
- Bigger and more expensive is better

- 2. sUAS reduce manpower
- 3. A pilot is a pilot is a pilot
- 4. sUAS crewing is different than life flight or other manned aviation crews
- 5. Streaming video is a silver bullet
- 6. Bigger and more expensive is better

- 2. sUAS reduce manpower
- 3. A pilot is a pilot is a pilot
- 4. sUAS crewing is different than **Qurphyains affe**wired for manned aviation crews visual capture

America's Got Talent!

- 5. Streaming video is a silver bullet
- 6. Bigger and more expensive is better

- 1. Regulations interfere with meeting goals
- 2. sUAS reduce manpower
- 3. A pilot is a pilot is a pilot
- 4. sUAS crewing is different than life flight or other manned aviation crews
- 5. Streaming video is a silver bullet
- 6. Bigger and more expensive is better

7

6

For more information:

- https://www.fhwa.dot.gov/uas/resources/hif19019.pdf
- CRASAR.org and CRASAR YouTube channel
- robin.r.murphy@tamu.edu
- @robinrmurphy
- https://www.linkedin.com/in/murphyrobin/

DISASTER ROBOTICS

ROBIN R. MURPHY

