

Use of UAS in Bridge Inspection

Christopher Parrish Oregon State University

Outline

- Projects conducted to date
- Motivation for use of UAS in bridge inspection
- Operations
 - » Aircraft and sensor selection
 - » Workflow
 - » Safety plan
- Results of bridge inspections
- Cost-benefit analysis
- Key findings

Projects

OSU UAS Bridge Inspection Projects:

- » PacTrans (2015): Cost-Effective Bridge Safety Inspection using Unmanned Aerial Vehicles
- » Oregon DOT (2015-2018): SPR 787 Eyes in the Sky: Bridge Inspections with Unmanned Aerial Vehicles

Related projects

- » FHWA (2015-2017): Effective Use of Geospatial Tools in Highway Construction (with WSP)
- » PacTrans (2018): UAS in Transportation Expo
- » PacTrans (2017-2019): An Airborne Lidar Scanning and Deep Learning System for Real-time Event Extraction and Control Policies in Urban Transportation Networks
- » PacTrans (2020): Unmanned Aircraft Systems in Transportation: Research-to-Operation (R2O) Peer Exchange

Motivation

UAS

- » Simply one tool--but a potentially powerful one--for bridge inspection
 - Provides new method of remotely viewing bridge elements at high-resolution, while keeping both feet on the ground
 - Can reduce lane closures, use of bucket trucks, and climbing for some percentage of bridges to be inspected annually
 - ✓ Enhance safety and reduce costs for some percentage of inspections

Specific Project Goals (SPR 787)

- Evaluate performance of UAS for bridge inspection
- Identify inspection requirements that can and cannot be satisfied with UAS
- Provide cost-benefit analysis
- Develop SOPs
- Develop safety plan
- (Also extend analysis to inspection of communication towers)

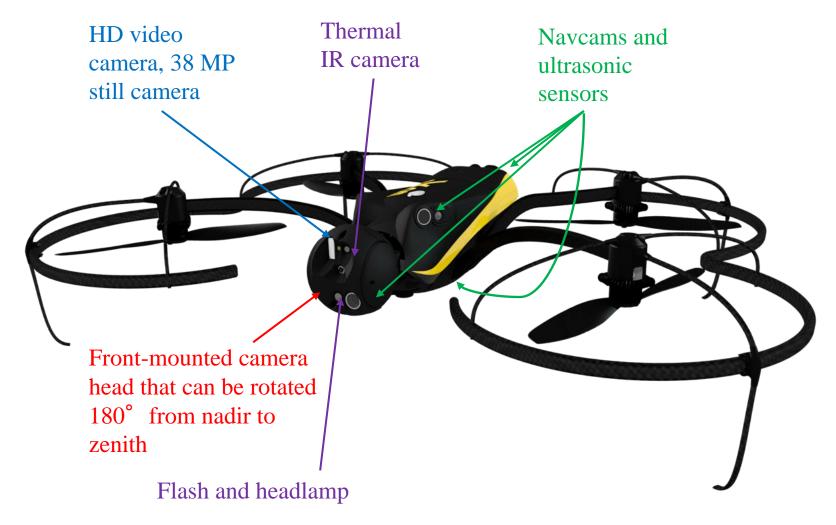
Aircraft and Sensor Analysis

• Main categories of remote aircraft:

Helicopters

Fixed-wing

Multi-rotor



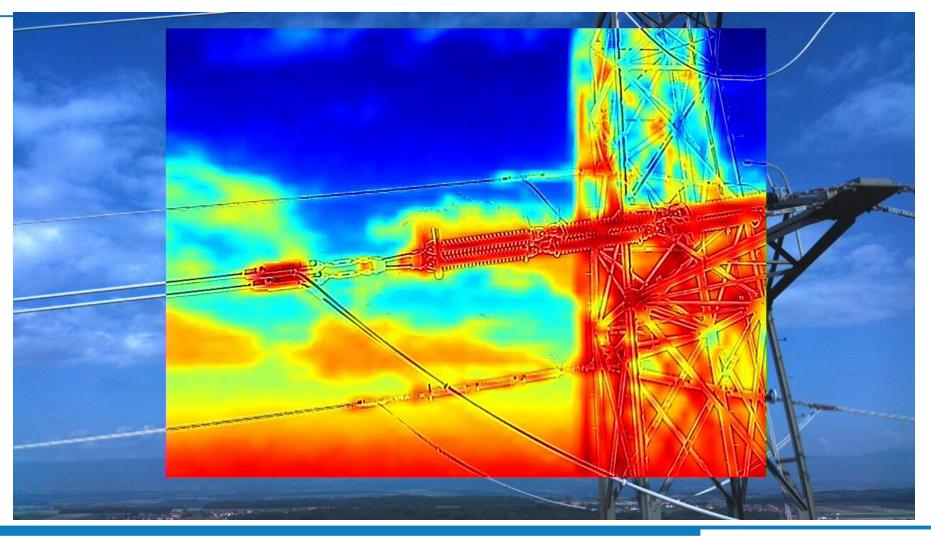
Components of a UAS Designed for Structural Inspections

Flight planning software designed to facilitate inspection projects

Importance of Rotating Sensor Head

- A) Camera optical axis pointing down (nadir)
 - » Typical mapping configuration
- B) Camera optical axis pointing horizontal
 - » Common in inspection work
- C) Camera optical axis tilted up
 - » Common in inspection work

Importance of NavCams & Obstacle Avoidance


Ultrasonic sensors

Thermal Camera

Sensor Types: Lidar

Sensor Types: Cameras

Ground Control Station

Laptop/Computer

Datalink Antenna

Sun-Shade

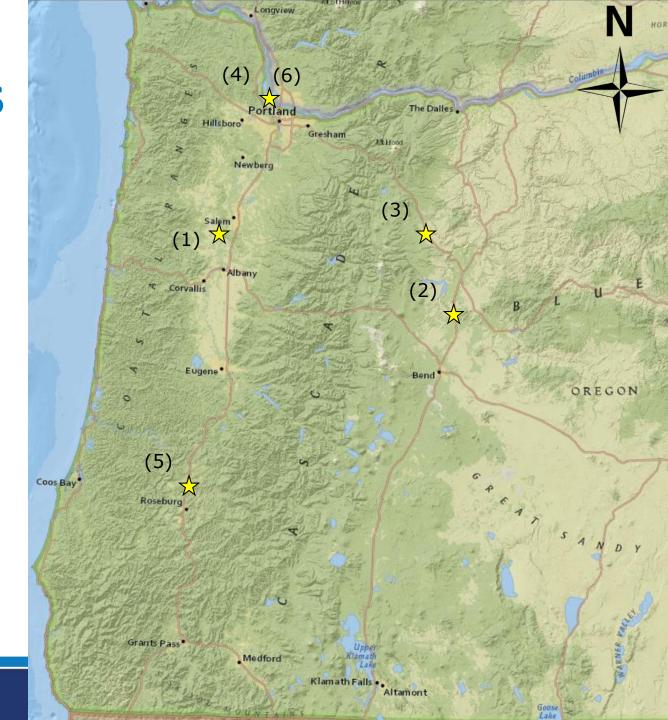
Various Trays

Portable Music Stand

Marine Battery

Takeoff and landing zone

- » Large, clear, flat area
- » Away from people
- » Access
 permissions (!)



Test Bridge Inspections

- (1) Independence Bridge
- (2) Crooked River Bridge
- (3) Mill Creek Bridge
- (4) St. Johns Bridge
 - » Preliminary
- (5) Winchester Bridge
- (6) St. Johns Bridge
 - » Detailed

Test Bridge Inspection: Independence Bridge, Sept 2015

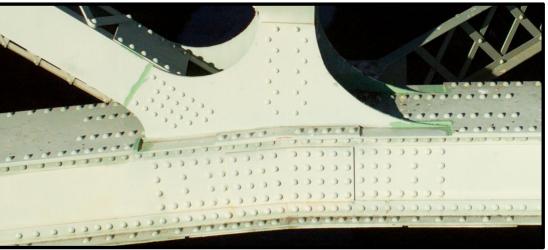
- Location: Independence, OR
- Airframe: Phantom 3 Pro
- Flight objective
 - » Test bridge inspection workflow
 - » Capture still and video imagery
- Details
 - » Large deck plate girder bridge
 - 675.4 m long
 - Longest span: 46.3 m
 - » Classified as Fracture Critical

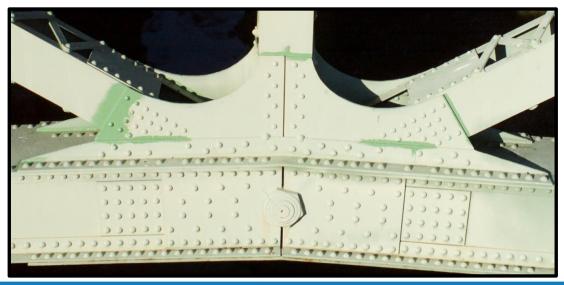
Independence Bridge: Imagery Examples

Independence Bridge: Imagery Examples

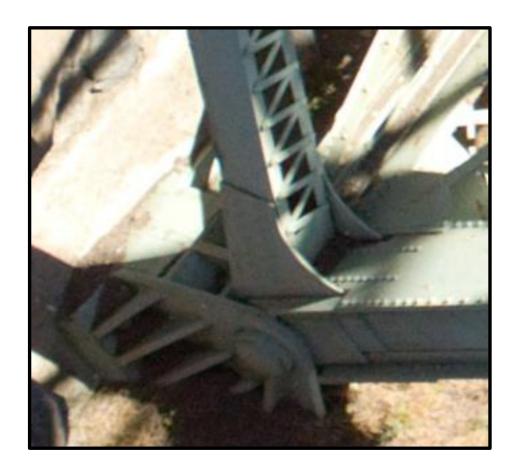
Test Bridge Inspection: Crooked River Bridge, July 2016

- Location: 8 km north of Terrebonne, OR
- Airframe: senseFly Albris
- Flight objective
 - » Capture high-quality imagery for inspection purposes
 - » Targeting specific areas that are difficult to inspect using traditional methods
 - » Create 3D model via SfM
- Details
 - » Steel Arch Bridge
 - » 141 m long
 - Longest span: 100 m
 - » Pedestrian only



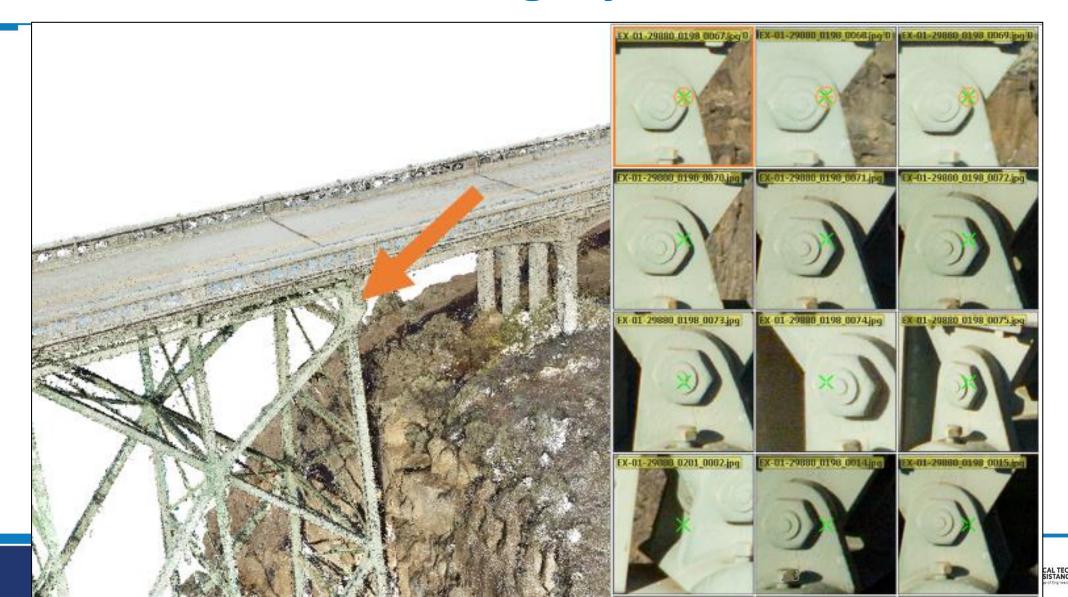


Crooked River Bridge: Imagery Examples



Crooked River Bridge: Imagery Examples

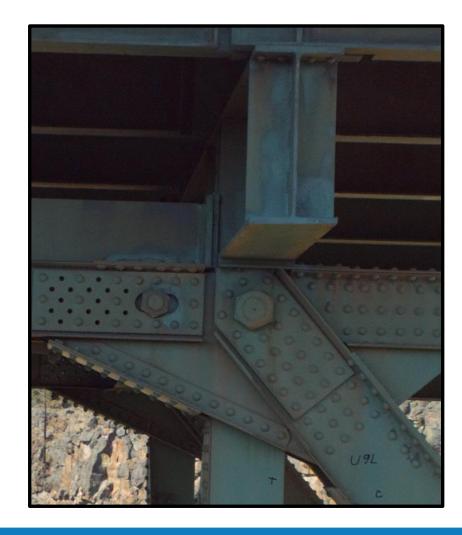
Crooked River Bridge: Mapping Flights


Crooked River Bridge: Point Cloud

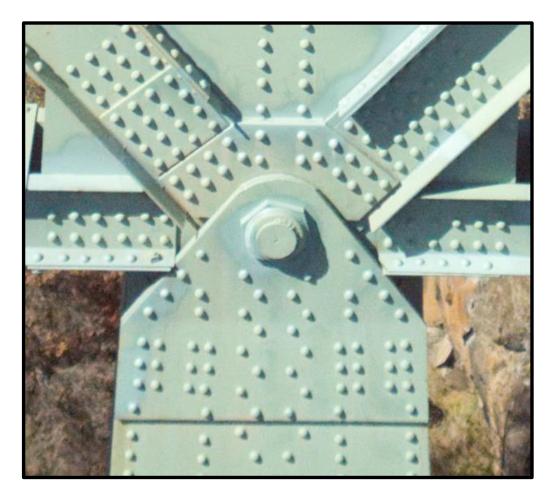
Point Cloud ↔ Raw Imagery

Test Bridge Inspection: Mill Creek Bridge, July 2016

- Location: 17 km NW of Warm Springs, OR
- Airframe: senseFly Albris
- Flight objective
 - » Capture high-quality imagery for inspection purposes
 - » Targeting specific areas that are difficult to inspect using traditional methods
- Details
 - » Cantilevered Warren deck truss bridge
 - » 163 m long
 - Longest span: 50 m



Mill Creek Bridge: Imagery Examples

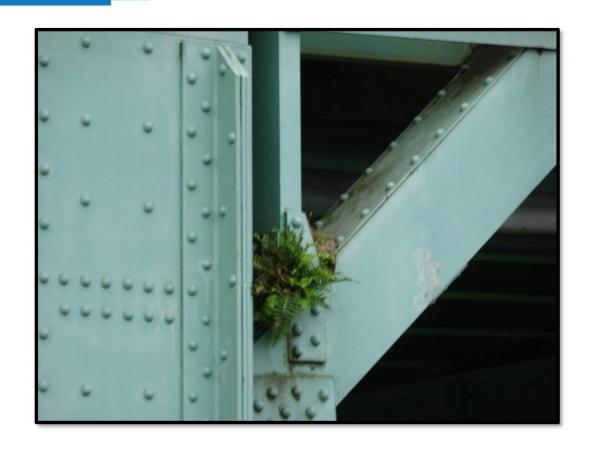


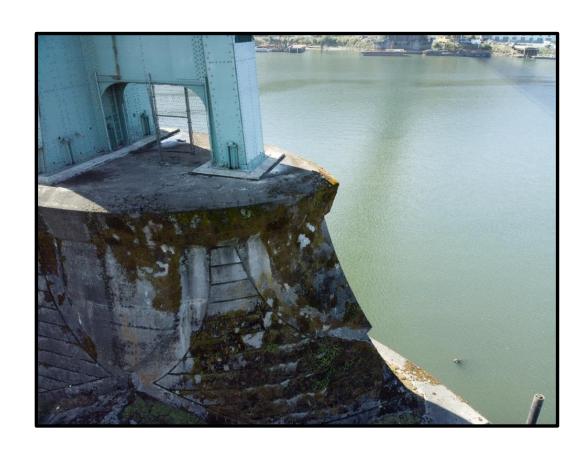
Mill Creek Bridge: Imagery Examples

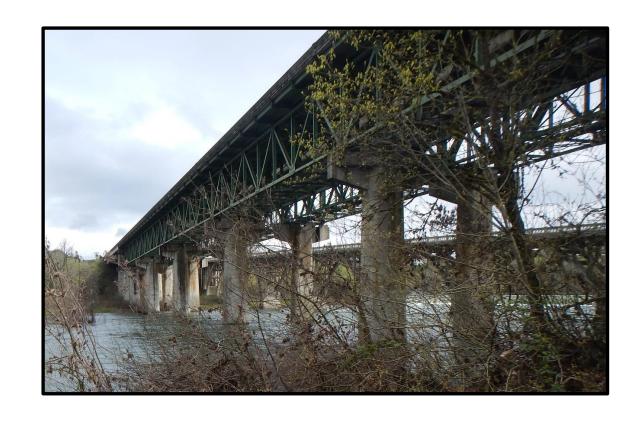


Test Bridge Inspection: St. Johns Bridge (Prelim Test), Sept 2016

- Location: Portland, OR
- Airframes: senseFly Albris, s900 with Sony WX500 (30x optical zoom)
- Flight objective
 - » Test of optical zoom camera
 - » Capture high-quality imagery
- Details
 - » Metal Riveted Warren deck truss
 - » Wire Cable Suspension
 - » 1100 m long
 - Longest span: 368 m







Test Bridge Inspection: Winchester Bridge, March 2017

- Location: Winchester, OR
- Airframes: senseFly Albris
- Flight objective
 - » Capture imagery while receiving real-time input from inspectors
- Details
 - » Warren deck truss bridge
 - » Southbound bridge of I-5
 - » 500 m long
 - Longest span: 42 m

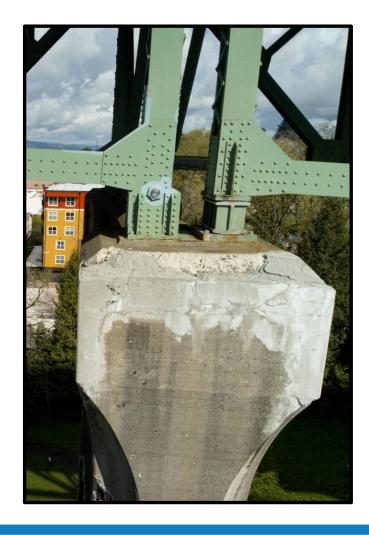
Winchester Bridge: Imagery Examples

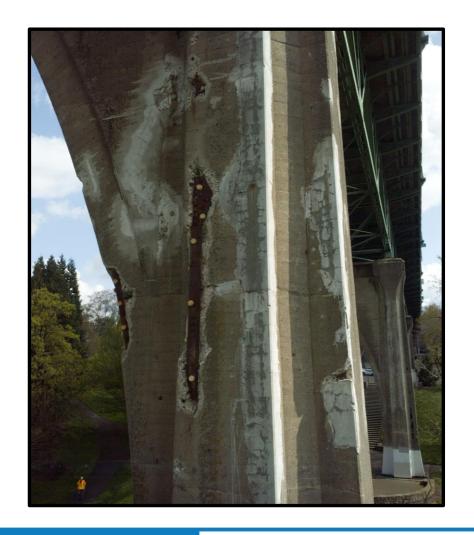
Winchester Bridge: Imagery Examples

Test Bridge Inspection: St. Johns Bridge (Detailed Test), April 2017

- Location: Portland, OR
- Airframes: senseFly Albris
- Flight objective
 - » Week-long, in-depth inspection
 - » Test inspecting directly under deck

Details


- » Metal Riveted Warren deck truss
- » Wire Cable Suspension
- » 1100 m long
 - Longest span: 368 m
- » Flight limited to eastern 550 m from center of main span



Cost-Benefit Analysis Procedures

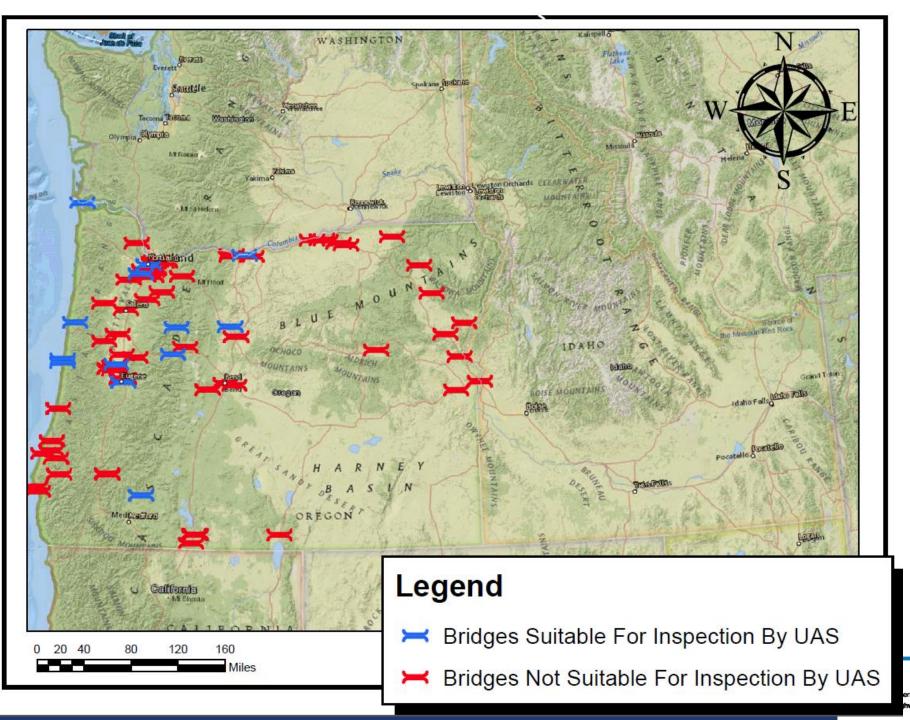
- 1. Establish baseline costs for bridge inspections conducted without the use of UAS by compiling existing data from Oregon DOT
 - » 33 bridge inspection project budget spreadsheets
- 2. Determine the percentage of bridges that Oregon DOT inspects that are suitable for UAS inspection
 - » Airspace, proximity to populated areas, vegetation, size of bridge, etc.
- 3. Establish which project cost categories could be reduced (not eliminated) through use of UAS:
 - » Personnel time (field and office)
 - » Equipment rental/usage (e.g., snooper trucks)
 - » Traffic control
 - » Travel (including lodging, meals and incidentals)

Cost-Benefit Analysis Procedures (cont'd)

4. Estimated annual cost savings = (average cost savings per suitable bridge) × (# of bridges/yr inspected by ODOT) × (percentage of bridges suitable for UAS inspection)

5. Estimate costs:

- » Cost of purchasing 3 UAS
- » Annual maintenance cost
- » Data storage


$$B = \$10,200(730 \times 0.16) = \$1,191,360$$

$$\sum C = \$117,237 + \$4,500 + \$5,700 = \$127,437$$

$$BCR = \frac{\$1,191,360}{\$127,437} \approx 9$$

- Reasons bridges were deemed "not suitable"
 - Low height, low clearance bridges, where it wouldn't be worthwhile to use UAS
 - Airspace
 - Access issues
 - Vegetation poses risks to UAS
 - Lack of suitable takeoff/landing site

Key Project Findings

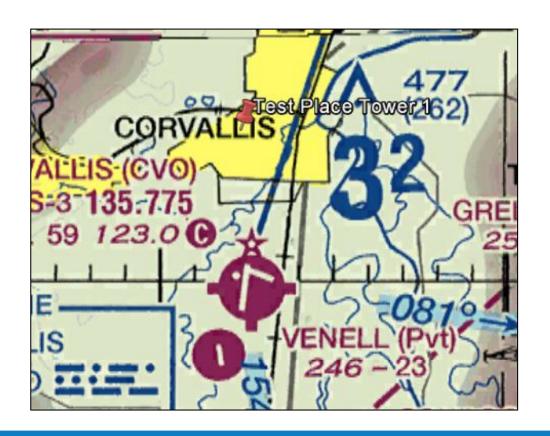
- UAS can assist to varying degrees in many required elements of a bridge inspection
 - » Very well suited for **initial and routine inspections** and for satisfying report requirements related to geometry and structural evaluation
- Cracks, pack rust, connections, hardware and bearing locations were all determined to be readily-identifiable in the imagery collected in this project, with the recommended flight procedures
- Cost-benefit analysis provides strong indication of positive ROI for implementing UAS in ODOT's bridge inspection program
 - » Potential for >\$1M in savings/year from use of UAS in structural inspections in large bridge inspection program
 - » Should be refined as more data becomes available

Practical Recommendations/Lessons-Learned

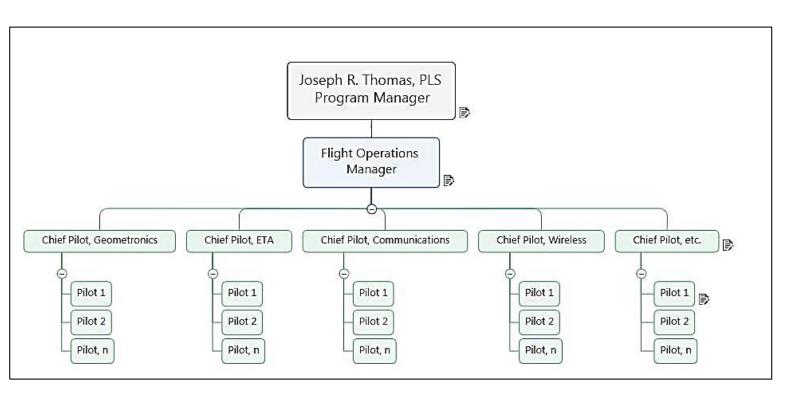
Remote aircraft requirements

- » Variable tilt (0-180°) camera
- » Zoom lens
- » Obstacle avoidance capabilities
- » Establish max wind speeds for structural inspections (aircraft dependent)

Personnel requirements


- » UAS bridge inspection flight crews should have at least a basic level of expertise in photography
 - ISO, aperture, shutter speed
- » Frequent practice (proficiency flights) specifically for structural inspection
 - Simulate: loss of GPS, wind gusts, operating near large structure

Safety Plan


D. CA	1 04/05/0	016		1	D:1	1	T)	.T 1
Date of Assessm		04/25/2016 Personnel:					Tom Normandy Matt Gillins	
Structure Type:		Communication Tower						
Location of	44°26	44°26'10.8" N 122°59'07.1" W			Other Spotters:		Farid Javadnejad Dan Gillins	
Structure:	0.5.05							
Owner of Structu					~~			Parrish
Owner's Contac					COA Number:		2015-AHQ-105-	
info:		NE Salem, OR 97301-6867					COA-TS	
	Phone	Phone (503) 986-2700					(818)-497-8576	
					Emergency Contact			
					Number:			
Airport within 5 nm? Yes: 2							Jacob Kropf	
If Yes Which:	J & J a	J & J airport					(541)-766-6783	
					info:			
		2 nm					N/A	
Airport:							UNICOM 123.0	
					Controller:			
Safety Inventory: Mark yes or no if any of the following hazards are potential for work site.								
YE N Equ	Equipment		N	Personal Ha	manda V	YES	N	Environmenta
S O Haz	zards	1 ES	YES O	Personal Ha	Laius I E		О	1 Hazards
X Nea	ırby	$ $ $ $ $ $ $ $ $ $	v	Twisting/Bending/Awkwar			X	Falling Debris
Vel	Vehicular Traffic		Λ	d Positions/	Heavy Lifting			
Nea	rby Heavy							Confined
X Equ	1 I		X Working		ver water		X	Confined
Ope	erations							Space
Tra	nsport/Launc							Weather
X hot				Loose unsta	ble footing	X		Related
Boa	nt/ATV/Etc.							Related
Dag	nt/Watercraft							Live
1 X	erations	X		Slip/Trip/Fall Hazard		X		Stock/Wildlif
Оре	erations							e
X AT	V Operations		X	Ladders/Elevated		X		Transients
A	v Operations	A Plat		Platforms	'latforms			Transients
X Oth	er		X	Other			X	Other

Oregon DOT UAS Program

UNMANNED AIRCRAFT SYSTEMS (UAS)

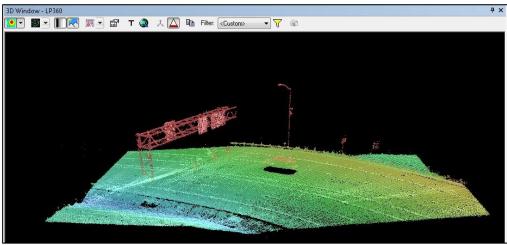
Operations Manual

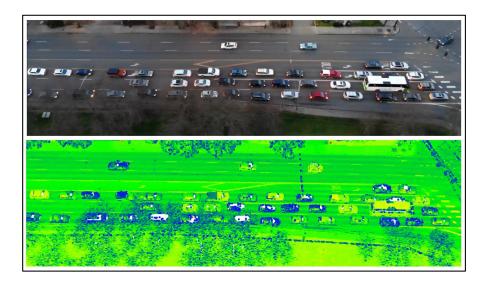
July 2017

Oregon
Department of
Transportation

Courtesy of Chris Glantz, PLS, Oregon Department of Transportation

Related Work: Communication Tower Inspections





Related Work: UAS Traffic Network Monitoring (PacTrans)

References

Gillins, D.T., C.E. Parrish, and M.N. Gillins, 2018. *Eyes in the Sky: Bridge Inspections with Unmanned Aerial Vehicles, SPR 787 Final Report*. Oregon Department of Transportation: https://www.oregon.gov/ODOT/Programs/ResearchDocuments/SPR787_Eyes_in_the_Sky.pdf

Gillins, M.N., D.T. Gillins, and C. Parrish, 2016. Cost-Effective Bridge Safety Inspection using Unmanned Aircraft Systems (UAS). GEO Structures Congress 2016 14-17 Feb, Phoenix, Arizona.

Parrish, C.E., D. Hurwitz, C. Simpson, S. Sorour, and A. Abdel-Rahim, 2019. *An Airborne Lidar Scanning And Machine Learning System For Real-time Event Extraction And Control Policies In Urban Transportation Networks*. PacTrans Final Project Report (in review).

Parrish, C., R. Slocum, and C. Simpson, 2018. UAS in Transportation Expo Final Report, online: http://depts.washington.edu/pactrans/wp-content/uploads/2018/11/UAS-in-Transportation-Report.pdf

Questions/Comments/Additional Info:

Contact info:

Christopher.Parrish@oregonstate.edu

204 Owen Hall

Oregon State University

Corvallis, OR 97331

