

Jennifer Wells, PE - State Bridge Inspection Engineer

Presentation Outcomes

- UAS Program Implementation Overview
- Understand Benefits and Limitations
- Participants will learn the current and future drone technologies that are effective for structure inspection
- Understanding of how to successfully implement drone technology into structure inspections
- Understand the costs associated with implementing drones and the cost savings that can be realized compared to traditional methods
- Understand drone data needs

UAS Program Implementation Overview

- Phased research began in 2015
 - Phase III completed in summer 2018
 - Published report http://www.dot.state.mn.us/research/reports /2018/201826.pdf
- Metro District drone purchase Elios
 - Phase IV Project almost complete...
- FHWA EDC 5 UAS Committee
 - STIC Grant
 - \$125k in drone purchases

- Inspection-specific UAS
- Object Sensing
- Capable of looking up
- Fly without GPS, under bridge decks
- Photo, Video and Thermal Imaging
- Confined Space

Commercial Drones (\$20,000 - \$35,000)

- Intel Falcon 8+
- DJI Matrice 210
- Flyability Elios

Benefits

- Sensor Size
- Reliability
 - Dual Batteries
- Durability
- Purpose Built for Inspection

Consumer Level Drones (\$500 - \$2000)

- DJI Mavic
 - Object Avoidance
- Parrot Anafi
 - Thermal

Benefits

- Low cost
- Small size
- More risk tolerance

Limitations

- Non-professional perception
- Reliability
- Small sensor sizes
- Less sophisticated flight planning

Propeller Aeropoints

- Automatic Ground Control Points
- Provides precision ground control
- Adds ability to accurately geolocate assets and inspection results

Structure Inspection Goals

- 1. Inspection Planning
- 2. Detect Conditions and Deficiencies
- 3. Document
- 4. Communicate

1. Inspection Planning with UAS

Flight Planning

• 3D Autonomous Flights

2. Detection of Defects and Deficiencies

- Use UAS as an access tool
- Traditional Access Tools
 - Aerial Work Platforms (AWP's)
 - Rope Access and StructureClimbing
 - Ladders
 - Binoculars

3. Document Conditions and Deficiencies

- Reality Modeling Software
 - Pix4D
 - Context Capture
- Input
 - Images
 - Ground Control
- Output
 - Orthomosaics
 - GeoTIFF, DSM, DTM
 - Point Clouds
 - Classified by AI
 - 3D Mesh
 - CAD

3. Document Conditions and Deficiencies

Deliverables - Orthomosaic

3. Document Conditions and Deficiencies

Deliverables – Point Clouds

Traditional Reporting

BR 3459 Span #3 Field Notes					
Location	North (upstream) Truss	South (downstream) Truss			
L0-L1 Bottom Chord (4 angles, 5" x 3-1/2" x 5/16")	[2004] Bottom chord angles reinforced (bolted plates) at L0, L1 and at the center. [2008] There is pitting and section loss (painted over) just west of the center section reinforced in 1994 - the horizontal legs of the two exterior angles have rusted through. [2011] No change. [2015] Through corrosion top horizontal leg of bottom exterior angle west of retro fit. [2017] Pitting on the upper legs of the chord inside the panel point. (Photo 20)	[2008] Upper angle is bent at mid- panel. [2008] The horizontal legs of the truss bottom chord angles have pack rust (minor section loss) at L0. [2008] The vertical leg of the bottom interior angle has pack rust (section loss) along the edge of the interior L0 gusset plate. [2011] No change. [2015] Pitting 3/16" deep at L0. Through corrosion on bottom interior angle horizontal leg inside panel point L0. Pitting ¼" deep on top interior horizontal legs inside L1.			
L0-L1 Lower Lateral Bracing	[2004] Lower lateral bracing members replaced. [2011-2015] No deficiencies noted.				
L1 Gusset Plates (1/2" thick)	[2004] Repainted - L0/L1 & L1/L2 connections reinforced (bolted plates). [2011] No deficiencies noted. [2013-2015] 1/8" bow on EGP from PR.	[2004] Repainted. [2010] Minor corrosion. [2011] No change [2013-2015] IGP has 1/4" PR distortion over upper angle of lower chord, E side.			
L1-U1 Vertical (4 angles, 3" x 2-1/2" x 1/4")	[2008] Vertical has minor section loss at L1. [2011] No deficiencies noted. [2013] NC to section loss @ L1. [2013-2015] Paint failures over upper half of N face of both flanges. [2017] 3/16" pitting at L1N (Photo 21)	[2011] No deficiencies noted. [2015] Paint failure throughout.			

Cloud Sharing

Case Study – St. Croix Crossing Extradosed Bridge

- Crosses the St. Croix Scenic Riverway
- Construction complete in July 2019
- Scope Routine Inspection

Case Study – St. Croix Crossing Extradosed Bridge

https://cloud.pix4d.com/pro/project/507277/model?shareToken=352346c7-7098-44ca-9b52-07f1c9eecee1

- Intel Falcon 8+
- Capable of looking up
- Fly without GPS,under bridge decks
- High wind tolerance
- High ResolutionImages
- Propeller AeropointAutomatic GCP's

Deliverables

• 3D Models and High resolution photolog

Bridge Candidates

Works Well

- Large Bridges
- Bridge in open areas
- Bridges that depend on traffic control and UBIV's for inspection

Does not Work Well

- Bridges over high ADT roadways
- Bridges in heavily wooded areas

Other Applications – Confined Spaces

Other Applications – Confined Spaces

Other Applications - Infrared

Other Applications – 3D Modeling

Other Applications – 3D Modeling (Photo Log)

Other Applications – Pairing with Underwater 3D Modeling

Other Applications – Corridor Modeling

Other Applications – Overhead Signs

Other Applications – Volume Calculations

Other Applications – Monument Inspection/Inventory

Other Applications – Rock Slides/Scour Inspection

Other Applications – Roadway Mapping

Benefits

- Safety Improvements
 - Inspectors
 - Public
- Quality Gains
- Cost Savings

Challenges

- Learning Curves
- Not Hands On
- Acceptance
- Rules and Regulations
- Data Storage

Safety Analysis

- Remove inspectors from harms way
 - Heights
 - Traffic
- Reduced traffic control improves safety for inspectors and public
- Hundreds of Inspection Flights with no incidents or close calls
- Work zone accident occurs every 5.4 minutes in the United States
- In 2014 669 Fatalities in Work Zones
- UAS are a way to remove personnel from the ROW
- FAA is focused on airspace safety but need to look at overall risks

Cost Savings

- Cost Savings up to 40%
- Most cost savings where traffic control and access equipment can be reduced or eliminated.

Structure	Traditional Inspection Cost	UAS Assisted Inspection Cost	Savings +/-	Savings Percentage
19538	\$1,080	\$1,860	-780	-72%
4175	\$15,980	\$13,160	2,820	18%
27004	\$6,080	\$4,340	1740	29%
27201	\$2,160	\$1,620	540	25%
MDTA Bridges	\$40,800	\$19,800	21000	51%
2440	\$2,160	\$1,320	840	39%
27831	\$2,580	\$540	2040	79%
82045	\$2,660	\$1,920	740	28%
92080	\$2,580	\$1,350	1230	48%
92090	\$2,410	\$1,570	840	35%
62504	\$3,660	\$1,020	2640	72%
82502	\$3,240	\$2,400	840	26%

Average Savings 40%

Data Storage

- Super Computer
- Super Storage
- Security

Conclusions

- Know your intended purpose for the drone "off-the-shelf" UAS has limited inspection capabilities
- Using UAS for access is important but documentation and communication of results is more compelling
- UAS can supplement inspections as a tool
- Does not need to replace entire inspection
- Collaborate with other owners to share knowledge and promote future advancement

Additional Information

- Phase III Report Published
 - http://www.dot.state.mn.us/research/reports/2018/ 201826.pdf
- MnDOT Office of Aeronautics UAS Policy/Info
 - http://www.dot.state.mn.us/aero/drones/index.html

Research Projects

We put your ideas in motion

Jennifer L. Wells, P.E.

Bridge Inspection Engineer
MnDOT Bridge Office
3485 Hadley Avenue North
Oakdale, MN 55128-3307
Phone: 651-366-4573
jennifer.Wells@state.mn.us

QUESTIONS?

